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The rate of growth of the nonlinear terms in the vorticity equation are analysed
for a turbulent flow with r.m.s. velocity u0 and integral length scale L subjected to
a strong uniform irrotational plane strain S , where (u0/L)/S = ε � 1. The rapid
distortion theory (RDT) solution is the zeroth-order term of the perturbation series
solution in terms of ε. We use the asymptotic form of the convolution integrals for
the leading-order nonlinear terms when β = exp(−St) � 1 to determine at what
time t and beyond what wavenumber k (normalized on L) the perturbation series in
ε fails, and hence derive the following conditions for the validity of RDT in these
flows. (a) The magnitude of the nonlinear terms of order ε depends sensitively on the
amplitude of eddies with large length scales in the direction x2 of negative strain. (b)
If the integral of the velocity component u2 is zero the leading-order nonlinear terms
increase and decrease in the same way as the linear terms, even those that decrease
exponentially. In this case RDT calculations of vorticity spectra become invalid at
a time tNL ∼ L/u0k

−3 independent of ε and the power law of the initial energy
spectrum, but the calculation of the r.m.s. velocity components by RDT remains
accurate until t = TNL ∼ L/u0, when the maximum amplification of r.m.s. vorticity
is ω/S ∼ ε exp(ε−1) � 1. (c) If this special condition does not apply, the leading-
order nonlinear terms increase faster than the linear terms by a factor O(β−1). RDT
calculations of the vorticity spectrum then fail at a shorter time tNL ∼ (1/S) ln(ε−1k−3);
in this case TNL ∼ (1/S) ln(ε−1) and the maximum amplification of r.m.s. vorticity is
ω/S ∼ 1. (d ) Viscous effects dominate when t � (1/S) ln(k−1(Re/ε)1/2). In the first
case RDT fails immediately in this range, while in the second case RDT usually fails
before viscosity becomes important. The general analytical result (a) is confirmed by
numerical evaluation of the integrals for a particular form of eddy, while (a), (b), (c)
are explained physically by considering the deformation of differently oriented vortex
rings. The results are compared with small-scale turbulence approaching bluff bodies
where ε� 1 and β � 1.

These results also explain dynamically why the intermediate eigenvector of the
strain S aligns with the vorticity vector, why the greatest increase in enstrophy
production occurs in regions where S has a positive intermediate eigenvalue; and
why large-scale strain S of a small-scale vorticity can amplify the small-scale strain
rates to a level greater than S – one of the essential characteristics of high-Reynolds-
number turbulence.
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1. Introduction

In most turbulent flows the large-scale velocity field is a straining motion, either
irrotational or rotational, that changes slowly on the time scale of the turbulent
eddies – for example flow over waves, turbulence entering engines etc. The main
practical and fundamental question concerns how the statistical and eddy structure
of the turbulence is distorted by the strain and how its other properties are changed,
such as mixing caused by the separation of fluid elements, or dissipation caused by
transfer of kinetic energy to small scales. A key problem of turbulence research is to
study how the nonlinear interaction between eddies or between Fourier components
is affected by distortion.

It is now well known that many aspects of distorted turbulent flows are determined
by the linear interaction between the turbulence and the large-scale mean straining
flow and for which the nonlinear interaction can be neglected (see the review by Hunt
& Carruthers 1990). Rapid distortion theory (RDT) is the term used to describe these
methods and detailed assumptions of this simplified, though where appropriate quite
powerful, approach.

The only theoretical calculations of the nonlinear interaction for turbulent flows
have been based on statistical physics concepts, such as direct interaction approxima-
tion (DIA) and eddy-damped quasi-normal Markovian (EDQNM) (reviewed recently
by McComb 1990). Cambon & Jacquin (1989) and Cambon, Mansour & Godeferd
(1997) have extensively investigated the effects of rotation on turbulent flow using
EDQNM, and have developed weakly nonlinear theories which relate EDQNM to
RDT. It has not been shown how and when the nonlinear interaction dominates
linear distortion effects in the case of irrotational strain, and therefore we do not have
much understanding of the limitations of RDT.

In this paper we explore a different approach based on a general asymptotic analysis
of the nonlinear terms (expressed in terms of convolution of Fourier transforms) for
the fluctuating vorticity field; no assumptions are made about its initial form provided
its amplitude is small compared with the mean strain. This allows us to calculate
the next term in the expansion of which RDT is the zeroth-order term, and hence to
estimate accurately the period of validity of RDT.

The changes in the form of the eddy structure under the action of an irrota-
tional plane strain were defined with more precision using topological and kinematic
concepts by Hunt & Kevlahan (1994). That study provides further evidence that
the analysis of the nonlinear term associated with these linearly distorted structures
should provide a first-order estimate for the limitations of the linear calculation. The
work presented here may well provide a general approach for estimating nonlinear ef-
fects in a wide range of distorted turbulent flows; and perhaps also a new method for
improving the nonlinear ‘pressure–strain’ terms in the model equation for turbulent
Reynolds stress (recently reviewed by Launder 1989).

The nonlinear terms in the equation for the fluctuating vorticity ω when the
turbulence is undergoing a large-scale plane strain U (x) are those representing the
vortex lines being randomly rotated and stretched (by the terms (ω ·∇)u) and advected
(by the term (u · ∇)ω) by the small-scale turbulence u. The approach hitherto for
estimating the nonlinear terms relative to the linear terms (ω ·∇)U has been to assume
either that (ω ·∇)u has the same value as in undistorted turbulence (∼ (u(l)2/l2)t=0), in
which case the nonlinear terms are always greater than any exponentially decreasing
linear term, or that the magnitude of (ω · ∇)u is determined by the maximum value
of ω and u in the distorted flow in which case (ω · ∇)u could grow even faster than
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the fastest growing linear term. Neither of these cases is likely because, as seen in the
numerical simulation of Marshall & Grant (1994), the eddy structure changes in such
a way as to reduce the nonlinear vorticity distortion terms! In the most frequently
used current Reynolds stress models, these nonlinear terms are based on estimates
of the local distorted value of the turbulence covariance components and not on
the distorted eddy structure. However the latter point has been demonstrated as
crucial in modelling the nonlinear rotating and stretching effect, through an idealized
analysis of large-scale and small-scale turbulence undergoing distortion (Kida & Hunt
1989).

In this paper we analyse in detail the distortion of turbulence caused by a large-
scale irrotational plane straining flow, because of its importance in a number of
engineering problems and because of its fundamental importance in developing the
basic theory of turbulence structure. In §2 we review the classical assumptions about
the RDT approximation and present the viscous RDT equations and solutions for
irrotational plane strain. We then calculate the neglected nonlinear terms (using the
RDT solutions) for general initial conditions in §3, using asymptotic analysis for
large total strain to determine how these terms evolve over time. These zeroth-order
nonlinear terms are then used to calculate the next-order term in the RDT expansion.
We make the interesting discovery that the RDT assumptions can remain valid for
a relatively long time, usually until the final period of viscous decay, provided that
the integral of the initial turbulent velocity in the compressed direction is zero. This
condition is satisfied, for example, by eddies aligned in the compressed direction.
Estimates of the validity time of RDT are made and compared to the classical results.
Finally, in §4, the analytical results are verified against numerical calculations of the
nonlinear terms for the Townsend eddy, and explained by simple calculations of the
deformation of vortex rings.

In the second part (§5) of this paper we relate our results on the validity of RDT
to highly localized dynamical processes that occur within particular types of eddy
structure in direct numerical simulations (DNS). Two questions arise naturally from
these observations. First, which of these results are related to the internal dynamics
of the structures, and which to interactions between these structures and the large-
scale motions around them? Secondly, what is the dynamical explanation for this
intermittency and the generation of persistent coherent structures?

These questions are investigated here using the linear dynamical approach of
RDT. More specifically, we try to determine which aspects of ‘real’ turbulence that
are not present in random or Gaussian velocity fields also appear when Gaussian
velocity fields are subjected to rapid irrotational strain. A striking observation whose
dynamical origin is unclear is the alignment between the intermediate eigenvector
(associated with the intermediate eigenvalue) of the rate-of-strain tensor and the
vorticity. This alignment is not observed in Gaussian or random turbulence (Shtilman,
Spector & Tsinober 1993). Ashurst et al. (1987), Vincent & Meneguzzi (1991) and
Blackburn, Mansour & Cantwell (1996) observe such an alignment in DNS and it
has been suggested that it may arise from nonlinear effects.

Recently Jiménez (1992) has put forward a theory to explain why one might expect
to see the alignment between the vorticity and the intermediate eigenvector of the rate
of strain tensor in regions where the vorticity is aligned primarily in one direction
(a ‘vortex tube’ or ‘vortex sheet’). The dynamical result we obtain here which shows
how a vortex sheet (and hence the observed alignment) is produced by persistent
irrotational straining of initially random and isotropic small scales complements
Jiménez’s kinematical explanation.
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We also demonstrate how the difference in enstrophy production between regions
with positive and negative intermediate eigenvalues of the rate-of-strain tensor, which
was derived heuristically by Betchov (1956), might develop.

2. RDT equations and assumptions
2.1. Rapid distortion equations

The vorticity and associated velocity equations for an incompressible flow, for a fluid
with uniform properties and with no rotational body forces, are

∂Ωi

∂t
+Uj

∂Ωi

∂xj
= Ωj

∂Ui

∂xj
+ ν

∂2Ωi

∂xj∂xj
, (2.1)

and
∂Uj

∂xj
= 0, (2.2)

where Ui is the velocity field and Ωi is the vorticity field, where Ωi = εijk∂Uk/∂xj so
that ∂Ωk/∂xk = 0. We now divide the vorticity and velocity fields into mean and
turbulent parts, Ui = Ūi + ui, Ωi = ωi where we have assumed that the mean flow is
irrotational. We further assume that the mean velocity field Ūi is a uniform strain

Ūi(xj, t) = Sij(t)xj + Ū0
i (t), (2.3)

and represent the turbulent parts as the superposition of plane waves using Fourier
transforms

ωi(x, t) =

∫
ω̂i(χ, t) exp(iχ(t) · x) dχ(t), (2.4)

ui(x, t) =

∫
iεijk

χj(t)

χ(t)2
ω̂k(χ, t) exp(iχ(t) · x) dχ(t). (2.5)

By applying the principle of the conservation of wavefronts to these weakly nonlinear
flows χi(t) varies in time according to

dχi(t)

dt
= −Sji(t)χj. (2.6)

This eliminates any explicit dependence on physical space positions xi when we make
the substitutions (2.4) and (2.5) in (2.1).

If we make the above substitutions we obtain the following equations for the
evolution of ω̂i:

dω̂i
dt

= ω̂jSij − νχ2ω̂i + Q̂i(ω̂, χ), (2.7)

where Q̂i(ω̂, χ) is the term nonlinear in turbulent quantities and is defined as

Q̂i(ω̂, χ) ≡ εjkl
χk

χ2
ω̂l ∗ χjω̂i − ω̂j ∗ εikl

χjχk

χ2
ω̂l , (2.8)

where ∗ signifies convolution. The first term on the right-hand side of (2.8) is the
nonlinear advection and the second is the nonlinear vortex stretching. The RDT
equations are obtained by putting Q̂i ≡ 0 in (2.7) which linearizes the equations and
allows analytical solutions in a number of cases (e.g. irrotational strain, pure shear
and axisymmetric strain).

It is appropriate at this point to note the similarities between classical hydrodynamic
stability theory and RDT. In stability theory one expresses the perturbation in terms
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of wavy modes which have the prescribed form exp(i(kjxj−σ(k)t)) where the solution
for σ indicates whether the perturbed modes oscillate or grow exponentially. In RDT,
on the other hand, the perturbation (in this case the turbulence) is represented in
terms of distorted Fourier modes exp(iχj(t)xj). (For the early origins see Craik &
Criminale 1986.) These distorted Fourier modes are more complicated than the wavy
modes and allow a richer description of the development of the turbulence.

In the next section we consider the conditions for the validity of the rapid distortion
approximation: the turbulent quantities are much smaller than the mean quantities
so that the nonlinear terms can be ignored. Note that if the turbulent part of the
flow is made up of a single plane wave then the nonlinear terms in the form of
convolutions become products which are identically zero due to the incompressibility
relations χjω̂j = 0 and χjûj = 0.

2.2. RDT assumptions

The conditions for RDT are usually defined for eddies of length scale l and velocity
scale u(l) undergoing some kind of distortion over a time TD , where the distortion
may be an imposed strain of strength S , the sudden introduction of a boundary (in
the frame of reference moving with the mean flow) or body forces etc. RDT is stated
to be valid either if TD is so rapid that the nonlinear terms in the vorticity equation
(2.7) have a negligible effect on the vorticity of the eddy (∼ u(l)/l) on the relevant
time scale τ(l) of the eddy l/u(l), or if the linear effects on ω of the distortion (e.g.
∼ S(u/l) for a straining distortion) are much stronger than the nonlinear self-induced
straining by the turbulence (∼ (u/l)2).

This leads to two possible conditions for RDT:

TD � τ(l) ∼ l/u(l) or S � u(l)/l. (2.9a, b)

The latter condition for the strength of the strain rate may be satisfied even when
the distortion is applied over a long period, i.e. for slowly changing turbulence, and
may be a valid condition for the accurate use of RDT. Hence in any given context
one must take care to define precisely the term ‘RDT’.

Note that the condition (2.9a) is only satisfied for small values of TD and (2.9b)
for larger values of S . Since the time scale l/u(l) decreases as l decreases in most
observed turbulent flows, it follows that the nonlinear terms are more significant for
smaller eddies.

An overall criterion for the validity of RDT for calculating the statistics of the
energy-containing eddies in a given turbulent flow can be derived from (2.9) in terms
of the r.m.s. velocity u0 and the integral time scale TL. This leads to

TD � TL ∼ L/u0 or (u0/L)/S = ε� 1, (2.10a)

which can be re-expressed as

1/TL � max(S, 1/TD). (2.10b)

This criterion determines whether RDT should be a valid approximation at the start
of the distortion. But, since (2.10b) does not indicate how long (and completely) the
RDT approximation will hold if S � 1/TL, the condition on the applied strain gives
no time limit. The central purpose of this paper is to deduce estimates of the period
of validity of RDT calculations over wavenumber space and for different components
of the velocity and vorticity.

Hunt & Carruthers (1990) pointed out that in slowly distorted flows, even when
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Figure 1. Schematic diagram of a laterally distorting wind tunnel producing a constant positive
rate of strain in the horizontal direction and an equal negative rate of strain in the vertical direction
(after Tucker & Reynolds 1968).

neither criterion in (2.10b) is satisfied, RDT calculations often describe the main
features of turbulence.

As explained in the introductory section, these conditions have been derived from
the vorticity equation by inspection, and by assuming that the nonlinear terms are of
the same order as in the undistorted turbulence. However, where the turbulence is
strongly distorted the nonlinear stretching term (ω · ∇)u can be much less than the
undistorted estimate of (u(l)/l)2, a good example being where the distorted flow forms
into strong straight vortex tubes where vorticity is greater than the applied strain rate
S; in this case the nonlinear vortex stretching term vanishes identically.

The criteria (2.9), (2.10) are only applicable when the linear approximation to the
vorticity equation is used to calculate the statistics of the velocity field (and not, for
example, the vorticity variance) (see Hunt & Carruthers 1990 and §3 in this paper).

Note that viscous stresses can be neglected for those eddy scales whose viscous
decay time scale is much longer than the distortion time TD , or than the strain time
scale S−1, i.e.

(l2/ν)� max(S−1, TD). (2.10c)

If the applied strain is irrotational, the effect of viscosity (or an eddy viscosity for
small-scale effects) is merely to add an identical exponential decay factor to all terms
of the rate of strain tensor of the turbulence velocity ∂ui/∂xj , and hence does not
affect the relative alignment of ω and u.

2.3. Irrotational plane strain

Before considering irrotational strain it is helpful to recall the basic types of plane
strain and the behaviour of the RDT solutions in each case (see also Townsend 1976 or
Cambon et al. 1994 for more details). Plane strain may be divided into three classes:
hyperbolic (strain dominates), shear (strain equals rotation) and elliptic (rotation
dominates). In the hyperbolic case (of which irrotational strain is the limit) the RDT
solutions have exponential growth, in the shear case the RDT solutions have algebraic
growth, and in the elliptical case the solutions consist of non-amplified inertial waves
except in a narrow band of wave-vectors where the solution grows exponentially. Pure
rotation has no such elliptical flow instability so that only dispersive inertial waves
exist. Thus the analysis presented in this paper of the growth of nonlinear terms in



Nonlinear interactions in strained turbulence 339

the case of irrotational strain should be representative of hyperbolic strain, but one
should expect quite different results in the case of shear or elliptic strain.

In this paper we focus on the case of steady plane irrotational (or pure) strain
that is uniform on the scale of the turbulent eddies. This idealized flow is relevant
to the straining of the smaller-scale eddies by large-scale motion in fully developed
turbulence since velocity gradients are formally a superposition of pure straining
motion and pure rotation. The transfer of energy to the small scales is greater in
the pure strain regions; our model calculation allows for weak nonlinear effects and
thus provides more detailed insight into this process than the pure RDT calculation
(Townsend 1976, pp. 99–100, and Kida & Hunt 1989). This problem is of direct
interest in the distortion of small-scale turbulence by a bluff body (Hunt 1973). Plane
irrotational distortion can be easily produced in the laboratory using the type of
wind-tunnel set-up shown schematically in figure 1 and thus we can easily compare
our results with experiment. Finally, the RDT vorticity and wave-vector solutions are
particularly simple in the case of irrotational strain.

We will assume that the turbulence has no effect on the straining flow, and for
simplicity S is taken as a constant (although the calculation can be generalized to
varying strain). In this case the deformation tensor Sij(t) becomes

Sij(t) = Sij =

 S 0 0
0 −S 0
0 0 0

 . (2.11)

Equation (2.7) for the evolution of the Fourier transform of vorticity ω̂i(χ, t) becomes

dω̂1

dt
= Sω̂1 − νχ2ω̂1 + Q̂1(ω̂, χ), (2.12a)

dω̂2

dt
= −Sω̂2 − νχ2ω̂2 + Q̂2(ω̂, χ), (2.12b)

where the nonlinear terms are

Q̂1(ω̂, χ) = ω̂j ∗
χj

χ2
(χ3ω̂2 − χ2ω̂3) + εjkl

χk

χ2
ω̂l ∗ χjω̂1, (2.13a)

Q̂2(ω̂, χ) = ω̂j ∗
χj

χ2
(χ1ω̂3 − χ3ω̂1) + εjkl

χk

χ2
ω̂l ∗ χjω̂2, (2.13b)

and ω̂3 may be found from the solenoidal relation

χ1ω̂1 + χ2ω̂2 + χ3ω̂3 = 0. (2.14)

The wave-vector equation (2.6) has the solutions

χ1(t) = k1 exp(−St), χ2(t) = k2 exp(St), χ3(t) = k3, (2.15a–c)

where k is the wave-vector at t = 0.
Non-dimensionalizing the equations for ω̂i(χ) and χ by the initial integral scale L

and the initial r.m.s. turbulence velocity u0, (2.12) and (2.15) become

dω̂1

dt
=

(
1

ε
− 1

Re
χ2

)
ω̂1 + Q̂1(ω̂, χ),

dω̂2

dt
= −

(
1

ε
+

1

Re
χ2

)
ω̂2 + Q̂2(ω̂, χ),

χ1(t) = k1 exp(−t/ε), χ2(t) = k2 exp(t/ε), χ3(t) = k3,
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where ε = (u0/L)/S � 1 is the ratio of the strain rate of the energy-containing
turbulence eddies to the applied strain rate, Re = u0L/ν is the Reynolds number, and
the quantities ω̂i, χi, ki and t are now non-dimensional. Note that because the ratio
of the integral scale to the dissipation scale in high-Reynolds-number turbulence is
approximately Re3/4 the wavenumber range for which there is significant turbulent
energy is

0 6 ki . Re3/4. (2.16)

Because we are interested in long-time St � 1 solutions (where t is the original
dimensional time), we make the change of variables τ = t/ε in the dimensionless
equations, and the RDT equations become

dω̂1

dτ
=
(

1− ε

Re
χ2
)
ω̂1 + εQ̂1(ω̂, χ), (2.17a)

dω̂2

dτ
= −

(
1 +

ε

Re
χ2
)
ω̂2 + εQ̂2(ω̂, χ), (2.17b)

χ1(τ) = k1 exp(−τ), χ2(τ) = k2 exp(τ), χ3(τ) = k3. (2.18a–c)

Making the zeroth-order, or RDT, approximation implies neglecting the nonlinear
terms which are order ε (but keeping the viscous terms) and leads to the solution

ω̂1(k, β) = β−1ω̂10(k)f̂ν1(k, β), (2.19a)

ω̂2(k, β) = βω̂20(k)f̂ν1(k, β), (2.19b)

ω̂3(k, β) = ω̂30(k)f̂ν1(k, β), (2.19c)

where the ω̂i(k) are the initial vorticity components,

β = exp(−τ) (2.20)

is the inverse of the strain ratio c,

f̂ν1(k, β) = exp
{
− ε

2Re

[
k2

1(1− β2) + k2
2(β−2 − 1) + k2

3 ln(β−2)
]}

(2.21)

is the viscous decay factor, and we have expressed the results in terms of (k, β) rather
than (χ(t), t) for simplicity.

Thus, in the inviscid range when β2 � k2ε/Re the vorticity component in the
stretching direction of the applied strain increases exponentially, while the vorticity
component in the compressing direction decreases exponentially. The vorticity com-
ponent normal to the plane of the applied strain is unaffected. The problem to be
addressed in the next section is calculating the next term in the asymptotic expansion
in terms of ε and determining the value of β at which the expansion becomes singular.

Note that the distorted velocity field and its statistics can be derived from the
expressions (2.19a) to (2.19c) in the RDT limit. The variances were first calculated
by Batchelor & Proudman (1954); asymptotic properties of the spectra were derived
by Hunt (1973). Note that exact solutions for ω̂ and û have been obtained for other
basic strain motions (axisymmetric, shear, rotational), but not for all types (Cambon
1982; Craik & Criminale 1986). In the analysis of this paper it is assumed that
the turbulence scale is much less than the scale over which ∇u varies. When the
turbulence scales are large, RDT can still be used, but different analytical techniques
are required.
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3. Growth of nonlinear terms
3.1. The general perturbation problem

The RDT solutions are exact solutions of the Navier–Stokes equations if the initial
flow is a single plane wave because in this case the nonlinear terms are exactly
zero (Craik & Criminale 1986). Real turbulence, however, consists of a continuous
spectrum of plane waves which interact nonlinearly. So the RDT approach is only
accurate when the nonlinear terms are relatively small. We might expect that the
RDT approximation eventually fails because the nonlinear terms grow faster than the
linear RDT terms. The order of magnitude estimates given in (2.9) provide a rough
guide, but we can find a more precise estimate of the period of validity for RDT
by actually calculating the way the nonlinear terms change with time. Formally the
following calculation is an evaluation of the first-order term in the expansion in ε
derived from (2.17).

Expand ω̂i(k, τ) in powers of ε,

ω̂i(k, τ) = ω̂
(0)
i (k, τ) + εω̂

(1)
i (k, τ) + O(ε2),

where the RDT solution corresponds to ω̂(0)
i . Thus the nonlinear terms become

Q̂i(ω̂, k, τ) = Q̂
(0)
i (ω̂(0), k, τ) + O(ε).

The first-order correction ω̂(1) to the RDT approximation is the solution of the
equations

dω̂(1)
1 (k, τ)

dτ
=
(

1− ε

Re
χ2(τ)

)
ω̂

(1)
1 (k, τ) + Q̂

(0)
1 (ω̂(0), k, τ), (3.1a)

dω̂(1)
2 (k, τ)

dτ
= −

(
1 +

ε

Re
χ2(τ)

)
ω̂

(1)
2 (k, τ) + Q̂

(0)
2 (ω̂(0), k, τ). (3.1b)

Thus the first-order correction to the RDT solution can be found by working out the
nonlinear terms using the zeroth-order RDT solutions.

From the RDT solution (2.18a) to (2.19c), for β � 1 the nonlinear terms in (2.17)
can be expressed as

Q̂
(0)
1 (ω̂(0), k, β) =

ω̂
(0)
1 (k, β)

ω̂10(k)

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(
−β2ω̂10(k − k′)k′1k′2ω̂30(k

′)

−β2ω̂20(k − k′)k
′2
2 ω̂30(k

′)− β2ω̂30(k − k′)k′1k′3ω̂30(k
′)

+β2(k1 − k′1)ω̂10(k − k′)k′2ω̂30(k
′) + (k2 − k′2)ω̂10(k − k′)k′3ω̂10(k

′)

+ (k3 − k′3)ω̂10(k − k′)k′2ω̂10(k
′)
) f̂ν2(k, k

′, β)

β4k
′2
1 + k

′2
2 + β2k

′2
3

dk′ (3.2a)

and

Q̂
(0)
2 (ω̂(0), k, β) =

ω̂
(0)
2 (k, β)

ω̂20(k)

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(
−ω̂10(k − k′)k′1k′3ω̂10(k

′)

−ω̂20(k − k′)k′2k′3ω̂10(k
′)− ω̂30(k − k′)k

′2
3 ω̂10(k

′)

+β2(k1 − k′1)ω̂20(k − k′)k′2ω̂30(k
′) + (k2 − k′2)ω̂20(k − k′)k′3ω̂10(k

′)

+ k′3ω̂20(k
′)k′2ω̂10(k

′)
) f̂ν2(k, k

′, β)

β4k
′2
1 + k

′2
2 + β2k

′2
3

dk′, (3.2b)

where ω̂
(0)
i (k, β) are the RDT solutions, ω̂i0(k) are the initial Fourier transformed
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vorticity components, and when β � 1,

f̂ν2(k, k
′, β) = exp

{
− ε

Re

[
(k
′2
1 − k1k

′
1) + (k

′2
2 − k2k

′
2)β
−2 + (k

′2
3 − k3k

′
3) ln(β−2)

]}
.

(3.3)
To determine how the magnitude and form of the integrals in (3.2a) and (3.2b)

change when total strain is large, i.e. β → 0, we need to find the asymptotic behaviour
of integrals of the basic form

I(k, β) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ĝ(k, k′)f̂ν2(k, k
′, β)

β4k
′2
1 + k

′2
2 + β2k

′2
3

dk′ (3.4)

for β � 1 and ĝ(k, k′) ∼ ω̂i0(k− k′)ω̂j0(k′)klkm for different i, j, l, m. Note that ĝ(k, k′)
is a non-singular function.

An examination of (3.3) or (2.17) immediately shows that, since k = |k| > k2, there
are two time scales to the problem: the inviscid range

k
( ε

Re

)1/2

� β � 1, (3.5)

and the viscous range

β � k
( ε

Re

)1/2

. (3.6)

Therefore, using (2.16), if we want all turbulence scales to be in the inviscid range for
a significant time we need

ε� Re−1/2. (3.7)

We consider these two ranges separately below.

3.2. Inviscid range

In the inviscid range the convolution integrals for the nonlinear terms have the form

of equation (3.4), but with the function f̂ν2 replaced by

f̂ν2(k, k
′, β) = 1. (3.8)

The largest contribution to the denominators, 1/χ2, in (3.4) comes from the region
in wavenumber space where k′2 = O(β) using standard methods for asymptotics of
integrals (e.g. Fraenkel 1969). The integral in the k′2-direction can be found by
calculating only the asymmetric part of the integral, i.e.∫ ∞

0

ĥ(k, k′)

β4k
′2
1 + k

′2
2 + β2k

′2
3

dk′2,

where ĥ(k, k′) = ĝ(k, k′) + ĝ(k,−k′), and splitting the integral into two ranges from
k′2 = 0 to k′2 = δ and from k′2 = δ to k′2 = ∞, i.e. ‘local’ and ‘global’ contributions; the
arbitrary transition value δ lies in the range β � δ � 1.

To approximate the integral over the small range from 0 to δ we use the rescaling
k′2 = βK (where K = O(1)) and expand the integrand for small β∫ δ

0

ĥ(k, k′) dk′2
β4k

′2
1 + k

′2
2 + β2k

′2
3

= β−1

∫ δ/β

0

(
2ĝ(0)

K2 + C2
+ 1

2
ĥ′′(0)

β2K2

K2 + C2
+ O(β4, β4K2)

)
dK,

(3.9)

where C2 = β2k
′2
1 + k

′2
3 , ĝ(0) = ĝ(k; k′1, 0, k

′
3) and ĥ′′(0) = ∂2ĥ/∂k

′2
2 (k; k′1, 0, k

′
3). Evaluat-
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ing the above integral gives

2ĝ(0)
β−1

C
arctan

(
δ

βC

)
+ 1

2
ĥ′′(0)

(
δ − Cβ arctan

(
δ

βC

))
+ O(βδ3). (3.10)

We can now expand all the terms for large δ/β and collect together terms of similar
order with δ = O(β1/2):

ĝ(0)
π

Cβ
− 2ĝ(0)

1

δ
+

(
2ĝ(0)

C2β2

3δ3
+ 1

2
ĥ′′(0)δ

)
− ĝ(0)πCβ + O(β3/2). (3.11)

To calculate the integral over the remainder of the range from δ to ∞ we expand
the denominator of the integrand for small β as k′2 > δ � β:∫ ∞

δ

ĥ(k, k′)

β4k
′2
1 + k

′2
2 + β2k

′2
3

dk′2 =

∫ ∞
δ

(
ĥ(k, k′)

k
′2
2

− ĥ(k, k′)

k
′4
2

C2β2 + O(C4β4)

)
dk′2. (3.12)

Expanding the integral for small δ and collecting terms of the same magnitude with
δ = O(β1/2) we have

2ĝ(0)
1

δ
−
∫ ∞

0

∂2ĥ(k, k′)

∂k
′2
2

ln k′2 dk′2 −
(

2ĝ(0)
C2β2

3δ3
+ 1

2
ĥ′′(0)δ

)
+ O(β3/2). (3.13)

Bringing together the approximations for the two parts of the range of the integra-
tion, the terms involving δ cancel and thus∫ ∞

0

ĥ(k, k′) dk′2
β4k

′2
1 + k

′2
2 + β2k

′2
3

= ĝ(0)
π

Cβ
+

∫ ∞
0

∂2ĥ(k, k′)

∂k
′2
2

ln k′2 dk′2−ĝ(0)πCβ+O(β3/2). (3.14)

We see that the leading-order term is a local contribution from the region near k′2 = 0,
followed by a first-order global contribution and a second-order local contribution.
Therefore the general properties of (3.14) depend crucially on the properties of ĝ as
k′2 → 0. We consider two possibilities.

(a) Let

ĝ(k; k′1, 0, k
′
3) = 0. (3.15a)

In this case to leading order in β, as β → 0

I(k, β) ∼
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ĝ(k, k′)

k
′2
2

dk′ = O(1), (3.15b)

and the leading-order term in (3.14) is a ‘global’ contribution from the whole range
of k′2. Therefore it follows that Q̂(0)

1 (ω̂(0), k, β) ∝ ω̂
(0)
1 (k, β), Q̂(0)

2 (ω̂(0), k, β) ∝ ω̂
(0)
2 (k, β),

so that in (2.19) the nonlinear terms change only at the same rate as the linear terms.
Substituting Q̂

(0)
1 (ω̂(0), k, β) = Q̂

(0)
1 (k)β−1 = Q̂

(0)
1 (k) exp(τ) and Q̂

(0)
2 (ω̂(0), k, β) =

Q̂
(0)
2 (k)β = Q̂

(0)
2 (k) exp(−τ) into the inviscid versions of (3.1a) and (3.1b) and solv-

ing we find that to first order the solution is

ω̂1(k, τ) ∼ ω̂10(k) exp(τ) + ετ exp(τ)Q̂(0)
1 (k), (3.16a)

ω̂2(k, τ) ∼ ω̂20(k) exp(−τ) + ετ exp(−τ)Q̂(0)
2 (k). (3.16b)

A secularity appears in the first-order terms (i.e. these terms become larger than
the leading-order terms at a critical time and the expansion breaks down) and thus,
for dimensionless wavenumbers of O(1), the zeroth-order RDT solution is valid for

τ . ε−1 ∼ τNL (3.17)
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or, in dimensional terms,

t . L/u0 ∼ TNL, (3.18)

where TNL is the time at which nonlinear effects become significant. This is the same
as the order-of-magnitude ‘rapid strain’ limit given in (2.10a).

How does the limit for the validity of RDT depend on the power law of the initial
energy spectrum in the inertial range? The most general representation of the Fourier
transform of the initial vorticity field, ω̂0(k), is

ω̂0(k) =
k × a
|k × a|ψ(k) +

k × (k × a)
|k × (k × a)|φ(k), (3.19)

where a is an arbitrary vector and ψ(k) and φ(k) are potentials. In order to construct
a relatively simple vorticity field which satisfies continuity and has a specified energy
spectrum E(k) we use the following special representation (with φ(k) ≡ 0):

ω̂0(k) = k × a(L3k−2E(k))1/2, (3.20)

where E(k) is the energy spectrum and where a is now a non-dimensional unit vector
which specifies the direction of ω̂0(k) in the plane normal to k in this particular
‘realization’. The choice of φ(k) ≡ 0 does not affect results derived below. By ensemble
averaging many such ‘realizations’, each with a different a, we could construct statistics
similar to those obtained from a completely general vorticity field given by (3.19).
This is the principle behind the simulation of turbulent flows by random Fourier
modes (Fung et al. 1992).

In this section we assume, without loss of generality, that ω̂10(k2 = 0) = 0, and
assume that E(k) is zero for small k and beyond the dissipation range (k > kdiss) and
has a self-similar form for large k. On this basis an appropriate jump form for E(k)
in non-dimensional form is

E(k) =

{
0, k 6 1, k > kdiss
k−2p, 1 < k < kdiss.

(3.21a)

For high-Reynolds-number turbulence with a Kolmogorov inertial range kdiss = Re3/4.
Then from (3.20)

ω̂10(k) = k2k
−(1+p). (3.21b)

The following analysis is done for ω̂1(k, β) because the leading-order nonlinear
term reduces to a particularly simple expression in this case. However, the results also
apply to ω̂2(k, β) since the perturbations series and leading-order nonlinear terms are
identical in form.

Keeping only the leading-order terms in the numerator of (3.2a), and neglecting
the terms O(β) in the denominator we find that the zeroth-order nonlinear term Q̂

(0)
1

becomes

Q̂
(0)
1 (ω̂(0), k, β) = β−1

∫ ∞
−∞

[k′3(k2 − k′2) + k′2(k3 − k′3)]
k′22

ω̂10(k − k′)ω̂10(k
′) dk′.

Note that Q̂(0)
1 is a random variable with zero mean. Substituting for ω̂10(k) using

(3.21), changing to spherical coordinates and integrating over directions we have

|Q̂(0)
1 | 6 4πk2k3β

−1

(∫ k−1

1

(k − k′)−(1+p)k′1−p dk′ +

∫ kdiss

k+1

(k′ − k)−(1+p)k′1−p dk′
)
,
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where we have used the fact that |k − k′| > ||k| − |k′|| (≡ |k − k′|). The limits of
integration have been chosen so that |k − k′| > 1 (equivalent to |k − k′| > 1), and
1 < |k′| < kdiss to be consistent with the definition of E(k) in (3.21). If k � 1 then the

largest contribution to Q̂(0)
1 comes from the regions |k− k′| = 1, i.e. from wavenumber

triads with two long legs of approximately equal length (k ∼ k′ � 1) and one short
leg (|k − k′| ∼ 1). Thus Q̂(0)

1 is approximately

|Q̂(0)
1 (k, β)| 6 8π

p
k2k3k

1−p 6
8π

p
k3−p. (3.22)

Note that the exponent of k involves −p rather than −2p because one of the legs of
the wavenumber triad is much shorter than the other two. The dynamical explanation
is that with large strain vortex lines are stretched to the extent of the strain, and
this defines the short leg of the triad. As we will see later, this means that the slope
p of the inertial-range energy spectrum cancels when calculating the criteria for the
validity of RDT.

If we now take the ratio of first- to second-order terms in (3.16a) using (3.21) and
(3.22) we find that the range of validity of the RDT approximation is

ετ
8π

p
k3k

2 . 1 or ετ
8π

p
k3 . 1, (3.23)

and that the RDT criterion is essentially independent of the power law p of the
energy spectrum of the inertial range. Using (3.23) we can derive the limits of the
RDT approximation in time and in wavenumber:

τ . ε−1k−3 ∼ TNL, k . (ετ)−1/3. (3.24a, b)

Thus RDT is valid for shorter times at larger wavenumbers, and over a decreasing
range of smaller wavenumbers as time increases. Note that since the largest wavenum-
ber of the flow kη ∼ Re3/4 this result implies that RDT is valid for the smallest scales
until the time

TNL ∼ ε−1Re−9/4. (3.25)

The preceding ‘large time’ analysis assumes that τ > 1 and thus in order for this
analysis to be valid for the entire range of wavenumbers we need ε < Re−9/4.

In dimensional terms the above expressions become

t .
L

u0

(Lk)−3 ∼ tNL, k .
1

L

(
L/u0

t

)1/3

∼ kNL. (3.26a, b)

Note that at the beginning of the distortion, even if ε� 1, (2.10b) may not be satisfied
for the smallest scales where

k > kNL ∼ ε−2/(3−2p). (3.26c)

Combining (3.26b) and (3.26c) shows that the value of kNL at first increases with time
until

t ∼ t∗ ∼ TLε6/(3−2p) (i.e. t∗ � TL). (3.26d)

We can now estimate the growth of mean-square vorticity ω2(t) with time. We
will assume that the vorticity for wavenumbers higher than kNL is of the same
order as the initial undisturbed vorticity ω0. This assumption is justified from the
observation that after a distortion (or, in this case, after the nonlinear turbulence
terms become more important than the mean distortion) initially isotropic turbulence
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relaxes towards its original isotropic form (e.g. Gence & Mathieu 1980), especially at
higher wavenumbers (Lee & Reynolds 1985). Then from (3.16) and (3.21a)

ω2
(NL)

(t) ∼ exp(2St)

∫ kNL

1

k2E(k) dk +

∫ ∞
kNL

k2E(k) dk. (3.27a)

Although kNL decreases as t increases the first term dominates because of the am-
plification factor exp(2St). Therefore when exp(τ) � 1, for high-Reynolds-number
turbulence

ω2
(NL)

(t) ∼ exp(2St)t−(3−2p)/3 for 3− 2p > 1. (3.27b)

Therefore the RDT value

ω2 = exp(2St)

∫ ∞
1

k2E(k) dk (3.27c)

overestimates the mean-square vorticity by a percentage that increases like t(3−2p)/3.
Note that the result (3.27b) could be used as a refined RDT estimate for r.m.s.
vorticity. If we repeat the calculation for mean-square velocity we find

u2 ∼ exp(St)

∫ ∞
1

E(k) dk ∼ exp(St) for 2p > 1, (3.28a)

while

u2
(NL) ∼ exp(St)

∫ kNL

1

E(k) dk +

∫ ∞
kNL

E(k) dk ∼ exp(St) for 2p > 1. (3.28b)

Thus we see that the RDT estimate of the mean-square velocity is unaffected by
nonlinear effects until kNL = O(1). In summary, due to the slope of the energy
spectrum, RDT significantly over-estimates r.m.s. vorticity, but gives an accurate
estimate of r.m.s. velocity provided that 1 < 2p < 3. These results on the range of
validity of RDT in wavenumber as a function of time are summarized in figure 2.

We can now also estimate the maximum value of the vorticity while the distortion
is described (to leading-order) by the RDT approximation:

ω

S
∼ ε exp(ε−1)� 1, (3.29)

where ω = (ω2)1/2 is the r.m.s. vorticity. Therefore the r.m.s. vorticity, which is initially
smaller than S , can be amplified to a value much greater than that of the applied
strain before the RDT approximation fails.

(b) If ĝ(k; k′1, 0, k
′
3) 6= 0, then similar asymptotic calculations for the k′1 and k′3

integrations lead to two possibilities
(i) If.

ĝ(k; k′1, 0, 0) 6= 0, (3.30a)

then

I(k, β) ∼ πβ−1 ln(β−1)

∫ ∞
−∞
ĝ(k; k′1, 0, 0) dk′1. (3.30b)

(ii) However, if

ĝ(k; k′1, 0, 0) = 0, but ĝ(k; k′1, 0, k
′
3) 6= 0, (3.31a)

then

I(k, β) ∼ πβ−1

∫ ∞
−∞

∫ ∞
−∞

ĝ(k; k′1, 0, k
′
3)

k′3
dk′1 dk′3. (3.31b)
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Figure 2. Enstrophy spectrum Ω(k) = ω̂iω̂
∗
i (k) showing how the range of k for which RDT is valid

(0 < k < kNL(t)) may increase and then decrease as the distortion proceeds. Note at t = 0 the
spectrum is undistorted, at t = t1 the distortion is weak (β ∼ 1), and when t = t2, t3, TNL it is assumed
that the distortion is strong (β � 1). First kNL(t) increases and then decreases, until at t = TNL
the r.m.s. vorticity is a maximum; this is also the limit of t for an accurate RDT approximation to
r.m.s. velocity. The dashed curve, for kNL(t) shows the limit of the RDT calculation. For k > kNL
the spectral curves are not computed; it is assumed (based on experiment) that the spectra revert
to their undisturbed form.

Inspection of (2.13a) and (2.13b) shows that only (3.31a) is the relevant form for
ĝ(k; k′1, 0, 0) as β → 0. When k′2 = k′3 = 0, it follows from its definition that
ω̂1(k1, 0, 0) = 0. Since the only terms in (2.13a) and (2.13b) involving ω̂′2 and ω̂′3 are
multiplied by k′2 and k′3, it follows that all the numerators are zero and therefore
ĝ(k; k′1, 0, 0) = 0.

Thus, for this limiting case, the magnitude of the nonlinear terms in (2.17) grows
faster than that of the largest linear term by a factor β−1.

Substituting Q̂
(0)
1 (ω(0), k, β) = Q̂

(0)
1 (k)β−2 = Q̂

(0)
1 (k) exp(2τ) and Q̂

(0)
2 (ω(0), k, β) =

Q̂
(0)
2 (k) into the inviscid versions of (3.1a) and (3.1b) and solving we find that to

first order the solution is

ω̂1(k, τ) ∼ ω̂10(k) exp(τ) + ε exp(2τ)Q̂(0)
1 (k), (3.32a)

ω̂2(k, τ) ∼ ω̂20(k) exp(−τ) + εQ̂
(0)
2 (k). (3.32b)

A secularity appears in the first-order terms and thus the zeroth-order RDT solution
for the energy-containing eddies (k ∼ O(1)) is valid for

τ . ln ε−1, (3.33)

or, in dimensional terms,

t .
1

S
ln ε−1 ∼ TNL. (3.34)
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This corresponds to the ‘large strain’ criterion as defined by the limit given in (2.10a).
Note that since the ratio of the two time limits (3.17) and (3.33) is

ε−1

ln ε−1
� 1, (3.35)

it follows that in case (b) RDT for the energy-containing eddies is valid for a much
shorter time than in case (a). We now calculate a time limit that takes into account
the wavenumber, and we consider the different criteria for the validity of RDT for
vorticity and velocity calculations.

Using the asymptotic relation (3.31) and keeping only the leading-order terms in
the numerator of (3.2a), we find that the zeroth-order nonlinear term Q̂

(0)
1 becomes

Q̂
(0)
1 (ω̂(0), k, β) = πβ−2k2

∫ ∞
−∞

∫ ∞
−∞
ω̂10(k − (k′1, 0, k

′
3))ω̂10(k

′
1, 0, k

′
3) dk′1 dk′3. (3.36)

Note that the nonlinear term in the stretched direction (the largest nonlinear term)
depends on gradients in the compressed direction of enstrophy in the stretched
direction. The larger these variations, the larger the nonlinear term.

Since ω̂10(k1, 0, k3) 6= 0 in this case, we can use (3.20) to choose the following form
for ω̂10(k):

ω̂10(k) =

{
0, k 6 1, k > kdiss
k1k

−(1+p), 1 < k < kdiss.
(3.37)

Substituting for ω̂10(k) in (3.36), changing to cylindrical coordinates and integrating
over directions we find

|Q̂(0)
1 (k, β)| 6 π2β−2k2

(∫ k−1

1

(k − k′)−(1+p)k′2−p dk′ +

∫ kdiss

k+1

(k′ − k)−(1+p)k′2−p dk′
)

6
2π2

p
β−2k2k

2−p 6
2π2

p
β−2k3−p, (3.38)

where we have used the fact that |k − (k′1, 0, k
′
3)| > ||k| − |(k′1, 0, k′3)|| = |k − k′|, and

have assumed that k � 1. Thus |Q̂(0)
1 (k, β)| has the same dependence on k as in the

previous case.
If we now take the ratio of first- to second-order terms in (3.32a) using (3.37) and

(3.38) we find that the range of validity of the RDT approximation is

ε exp(τ)
2π2

p

k2

k1

k3 . 1 or ε exp(τ)
2π2

p
k3 . 1, (3.39)

if we assume that k2/k3 ∼ 1 for simplicity. Again, the RDT criterion is only weakly
dependent on the power law p of the energy spectrum of the inertial range. Using
(3.39) we can derive the limits of the RDT approximation in time and in wavenumber:

τ . ln
(
ε−1k−3

)
∼ τNL(k), k .

(
ε−1 exp(−τ)

)1/3
. (3.40a, b)

Thus RDT is valid for shorter times at larger wavenumbers, and over a decreasing
range of smaller wavenumbers as time increases. In dimensional terms the above
expressions become

t .
1

S
ln

(
S

u0/L
(Lk)−3

)
∼ tNL(k), k .

1

L

(
S

u0/L
exp(−St)

)1/3

∼ kNL. (3.41a, b)

Following the same procedure as in (3.28), it follows that the amplification of vorticity
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at time t is

ω2
NL

(t) ∼ exp( 1
3
(3 + 2p)St)ε−(3−2p)/3 for 3− 2p > 1. (3.42a)

Thus RDT overestimates mean square vorticity by a ratio that increases like ε(3−2p)/3

exp( 1
3
(3− 2p)St). As in the previous case the RDT estimate for mean-square velocity

remains accurate until kNL = O(1).
We can now estimate the maximum r.m.s. vorticity while the RDT approximation

is the dominant effect as
ω

S
∼ 1. (3.42b)

Therefore the turbulence vorticity can reach the magnitude of the applied strain
before the RDT approximation fails (i.e. the turbulence vorticity can be amplified to
the same magnitude as the applied strain under RDT conditions).

Given this sensitivity to the form of ĝ(k; k′) as k′2 → 0 it is necessary to establish
in which kinds of turbulence the conditions (3.15a) and (3.30a) apply. The condition
(3.15a) in the limit β → 0 implies that ω̂1(k1, 0, k3) = 0, and therefore, since ω̂1 =
i(k2û3 − k3û2),

û2(k1, 0, k3) = 0. (3.43a)

This is equivalent in physical space to the condition∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
u2(x) dx2 exp(i(k1x1 + k3x3)) dx1 dx2 dx3 = 0, (3.43b)

or ∫ ∞
−∞
u2(x) dx2 = 0. (3.43c)

As explained by Batchelor (1953), for a homogeneous random function the integral
(3.43c) is not convergent. If turbulence is defined within a box of sides X1, X2, X3,
and zero outside it, the integral (3.43c) is now finite but oscillates in time or as X2

varies. Its magnitude is ∣∣∣∣∫ ∞
−∞
u2(x) dx2

∣∣∣∣ ∼ u0L. (3.44a)

Of course this is consistent with the mean of the turbulence being zero, since

u2 =
1

X1X2X3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
u2(x) dx = O(

L3u0

X1X2X3

)

→ 0 as (L3/X1X2X3)→ 0.

Such a situation might arise in practice when the turbulence consists largely of
eddies with their longitudinal velocity u1 symmetric about the plane x2 = 0, e.g. a jet
entering a contraction. In this case the condition (3.15a) may be satisfied and therefore
the ratio of the nonlinear to the linear terms remains of O(ε) for all components
of the vorticity until Stε = O(1). In this situation the inviscid RDT approximation
remains valid for a relatively long time. In the presence of viscosity, the viscous terms
may become significant over a long time as explained in the next section.

However, in most cases of homogeneous turbulence and homogeneous isotropic
DNS, the condition (3.31a) is applicable and then, as shown above, the first-order
term in ε increases until the time when exp(St)ε = O(1) and the expansion becomes
invalid. Therefore in this and most other distorted flows the RDT approximation is
only valid for a relatively short period.
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3.3. Viscous range

If the strain ratio is so strong that β can satisfy β � k(ε/Re)1/2, then the con-
volution integrals in (3.2a), (3.2b) are determined by the viscous exponential term

f̂ν2(k
′, k, β). Before examining the validity of RDT in the viscous range it is helpful

to determine the conditions under which RDT remains valid until viscosity becomes
important.

From (3.6), assuming a Kolmogorov range, viscosity is important for wavenumbers
k = O(1) when

β = exp(−τ)�
( ε

Re

)1/2

. (3.45)

Substituting τ = TNL ∼ ε−1 from (3.17) in the above equation we find that in case (a)
the RDT solution remains valid until viscosity becomes important provided that

ε−1 exp(−2ε−1)� Re−1. (3.46)

Similarly, substituting τ = TNL ∼ ln ε−1 from (3.33) we find that in case (b) the
condition for significant viscous effects is

ε� Re−1. (3.47)

The inequality (3.46) shows that in case (a) RDT can remain valid for the largest
turbulence scales right up until the viscous range for essentially any Reynolds number
provided ε < 1. On the other hand, in case (b) (3.47) shows that in high-Reynolds-
number turbulence viscous effects are significant in RDT only if ε is extremely small
(RDT usually fails before viscosity becomes important).

Because the convolution integrals in the k′2- and k′3-directions are of the form

I(x) =
∫ b
a
f(t) exp(xφ(t)) dt with x� 1 we can use Laplace’s method to calculate their

behaviour to leading order:

I(x) ∼ (2π)1/2f(c) exp(xφ(c))

(−xφ′′(c))1/2
, x→ +∞ (3.48)

where φ(t) has a maximum at t = c (see Durbin 1979).

Using Laplace’s method and assuming that ki > 0 we find that in the far viscous
range (ε/Re)k2β−2 � 1 our generic integral in (3.4) becomes

I(k, β) ∼ π4Re

ε
k−2

2 β(ln β−2)−1/2 exp
( ε

4Re
(β−2k2

2 + ln β−2k2
3)
)

×
∫ ∞
−∞
ĝ(k; k′1,

1
2
k2,

1
2
k3) exp(−(k

′2
1 − k1k

′
1)) dk1, (3.49)

and therefore

Q̂
(0)
i (k, β) ∼ ω̂

(0)
i (k, β)πai(k)

ωi0(k)

4Re

ε
k−2

2 exp

(
− εk

2
2

4Re
β−2

)
+ O(ε), (3.50)

where ai(k) is the integral in (3.49) and we have assumed that β 6 ε in the viscous
range. Inserting (3.50) into (3.1a), (3.1b) and solving we find that to first order the
solution is
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ω̂i(k, β) = ω̂
(0)
i (k, β) exp

(
− εk

2
2

2Re
β−2

)
+ ε

ω̂
(0)
i (k, β)πai(k)

ω̂i0(k)

2Re

ε
k−2

2 exp

(
− εk

2
2

4Re
β−2

)
+O(ε2). (3.51)

Thus a secularity develops and, if for simplicity we assume that (2πai(k)k−2
2 )/ω̂i0(k) ∼

O(1), RDT is only valid while

Re exp

(
εk2

2

4Re
β−2

)
< 1, (3.52)

but in the viscous range (ε/Re)k2β−2 � 1 by definition, and therefore RDT fails
immediately in the viscous range. However, one notes that in the viscous range both
the linear and nonlinear terms are decreasing like exp(− exp(2τ)). Thus, by the time
the nonlinear terms overwhelm the linear terms, the vorticity field will have decayed
essentially to zero.

Combining the fact that RDT fails immediately in the viscous range with the
inequalities (3.46) and (3.47), we see that in case (a) RDT remains valid for the
largest turbulence scales for

t .
1

S
ln

((
Re

ε

)1/2
)
∼ TNL, (3.53)

whereas in case (b), provided the Reynolds number is large, the limit of RDT is
usually still given by (3.41).

4. Example calculations
4.1. Numerical calculation of the nonlinear terms

In order to check the asymptotic analysis in the previous section we have calculated
the nonlinear terms (3.2a) and (3.2b) numerically for velocity fields corresponding to
the two initial conditions set out in (3.15) and (3.31a). Following Townsend (1976) we
take as a particular form the vorticity field of an ‘eddy’ that is highly localized and
whose velocity decreases rapidly away from its centre. In the first case the vorticity
ω2 of the eddy is aligned in the compressed direction x2, and satisfies (3.43c); in
the second case the same eddy is aligned with the x1 stretched direction (which does
not satisfy (3.43c)). The Fourier transform of the vorticity of the first case of the
‘Townsend’ eddy is defined by

ω̂1(k) = −k1k2 exp(− 1
2
k2), (4.1)

ω̂2(k) = (k2
1 + k2

3) exp(− 1
2
k2), (4.2)

ω̂3(k) = −k2k3 exp(− 1
2
k2). (4.3)

Note that ω̂1(k1, 0, k3) = 0, and hence û2(k1, 0, k3) = 0. When the eddy is initially
aligned with the stretched direction, ω̂1 is defined similarly by exchanging the indices
1 and 2 in the above equations.

The results of the numerical calculations for ω̂i(k, t) are shown in figure 3, for the
parameters Re = 102, ε = 10−2 and the particular wavenumber k = (1.5, 0.8, 1.3). Two
special NAG subroutines were used to calculate the three-dimensional convolution
integrals whose integrals, as our asymptotic analysis demonstrates, are very large over
a narrow range of the variables. The first subroutine, DO1GCF, uses a number the-



352 N. K.-R. Kevlahan and J. C. R. Hunt

oretical method and the second subroutine, DO1FCE, uses a seventh-order adaptive
grid.

These results clearly verify the analytical asymptotic calculations of the previous
section: the zeroth-order nonlinear terms remain negligible until the far viscous range
if the eddy is aligned in the compressed direction, but the nonlinear terms grow
faster than the linear terms by a factor β−1 if the eddy is aligned in the stretched
direction. In the far viscous range, where β−1 � (Re/ε)1/2 = 100, the nonlinear terms
grow faster than the linear ones by a factor exp(εk2

2β
−2/(4Re)) as predicted by the

asymptotic calculations.
Figure 4 shows schematically how ‘Townsend eddies’ respond differently to irrota-

tional strain depending on their orientation. Because the Townsend eddy is in fact
made up of concentric vortex rings we consider the response of single vortex rings in
the two planes perpendicular to the straining motion, which is easier to understand.

In figure 4(b) where the ring is compressed so that the vorticity field reduces to
ω3(x2) and the velocity field of the ring reduces to u1(x2), the nonlinear terms are
identically zero. In figure 4(c) the ring is in the (x1,x3)-plane and is stretched so that
it becomes elliptical, and its cross-section is also distorted so that it becomes flatter.
Neither state is steady: the nonlinear terms are significant. The ring itself bends
because the induced velocities u2 are larger at the curved ends; and each end of the
cross-section rotates faster than the centre thus rolling it up and eventually diffusing
the vorticity across a thicker vortex core or producing a concentric sheet structure as
discussed in §4.2.

Marshall & Grant (1994) have calculated numerically and analytically the response
of ‘thin’ vortex rings to irrotational straining. They have also found that stretching
can inhibit the destabilizing nonlinear terms and allow the linear theory to remain
valid for an extremely long time (sometimes until the aspect ratio of the stretched
vortex is only 0.008!).

4.2. Self-induced distortion of a vortex ring

Figure 4(c)(iv) shows how the cross-section of a vortex ring becomes elongated into
a strip of length 2L, width 2l, and thickness 2h by irrotational strain. The length of
the vortex ring increases with time and the thickness decreases with time, while the
width remains constant. A simple Biot-Savart calculation (e.g. Batchelor 1967) shows
that

u2(x3) = −ω1

4π

∫ l

−l

∫ h

−h

∫ L

−L

x3 − x′3
(x
′2
1 + x

′2
2 + (x3 − x′3)2)3/2

dx′1 dx′2 dx′3 (4.4a)

u2(x3) ≈
ω1h

π
ln

(
x3 − l
x3 + l

)
, (4.4b)

where we have assumed that L� ||x3| − l| and h� ||x3| − l|. Thus,

|u2(x3)| ∼ ±
ω1h

π
ln

(
2l

h

)
at x3 = ∓l. (4.4c)

Since |∂u2/∂x3| is maximum at each end of the strip the two ends roll up, which can
be described by the change of the tangent angle (see figure 4c(v)). From (4.4b)

dθ(x3)

dt
≈ ∂u2

∂x3

≈ ω1h

π

2l

x2
3 − l2

, (4.5)
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Figure 3. Numerical calculation of the growth of linear and zeroth-order nonlinear terms when

a Townsend eddy is distorted by plane irrotational straining where —, |Q̂(0)
i (t)|; – – – – –, |ω̂(0)

i (t)|;
— ·—, |ε/Reχ2(t)ω̂(0)

i (t)| and strain ratio c = exp(t) = β−1. Notice that when the eddy is aligned in

the compressed direction (so that
∫ ∞
−∞ u2(x) dx2 = 0) the nonlinear terms increase only at the same

rate as the linear terms. When the eddy is aligned in the stretched direction however, the nonlinear
terms increase at a rate c times faster than the linear terms. (a) Eddy axis in the compressed
direction x2, ω̂1 equations. (b) Eddy axis in the compressed direction x2, ω̂2 equations. (c) Eddy axis
in the stretched direction x1, ω̂1 equations. (d ) Eddy axis in the stretched direction x1, ω̂2 equations.

but ω1(t) ∼ ω10 exp(St). Hence at l − |x3| ∼ h,

dθ

dt
∼ ω1

π
∼ ω10

π
exp(St). (4.6)

When dθ/dt ∼ S , the self-induced rolling up motion is more significant than the
applied straining. This occurs at a time τmax such that

S ∼ ω10

π
exp(Sτmax). (4.7)
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Hence,

τmax ∼
1

S
ln
(π
ε

)
, (4.8)

where ε = ω10/S � 1. Based on this criterion the maximum value of ω1, ω1max, is
significantly greater than S since

ω1max ∼ ω10 exp(Sτmax) = πS. (4.9)

It also implies that h reaches an asymptotic thickness

hmin ∼ l exp(−Sτmax) ∼ l
ε

π
. (4.10)

If the Reynolds number is large enough the self-induced accelerating motion may
inhibit the diffusion of vorticity and then the strip may continue rolling up to form a
spiral vortex sheet structure.

5. Application of RDT analysis to the structure of homogeneous
turbulence

5.1. Vorticity alignment

Probability distribution functions (PDFs) of DNS turbulence show that the vorticity
vector aligns preferentially with the intermediate eigenvector of strain (e.g. Ashurst
et al. 1987; Vincent & Meneguzzi 1991). Vincent & Meneguzzi (1994) investigated the
development over time of turbulence structure in DNS when the initial condition is a
random Gaussian velocity field in which the vorticity is very small and structureless.
As the nonlinear processes develop, the first vortical structures to appear are pancake-
like regions in which the vortex lines lie in sheets of finite width. Since this distribution
is not stable the sheets bend and roll up to form the first vortex tubes (cf. §4.2).
Typically their length is 10 times their diameter, which indicates they are being
strained. An important observation is that the vorticity ω is greatly amplified in the
sheet phase and that it is aligned with the largest positive eigenvector of the tensor
of the large-scale strain Sij (i.e. large on the scale of the tube or sheet). This is to be
expected. However, Vincent & Meneguzzi (1994) also find that the vorticity aligns
with the intermediate strain eigenvector of the the sheets and they note that the PDF
over the entire turbulent flow shows that this alignment develops during the sheet
phase. Thus they conclude that the alignment of vorticity with the intermediate strain
eigenvector is due to the formation of sheets of intense vorticity. These sheets then
roll up to form tubes and these tubes retain the alignment of the sheets.

Vortex sheets or layers have been observed in many other DNS with a variety of
initial conditions and Reynolds numbers (e.g. Kerr 1987; Ruetsch & Maxey 1992),
and the transition from blobs to sheets to tubes has also been carefully investigated
using a different DNS code by Ruetsch & Maxey (1992). Furthermore, clear evidence
of layered vortex sheets has been found in experimental fully developed turbulence
by Schwartz (1990). He observes that the vortex sheets often form tube-like structures
which are consistent with the structure of a spiral vortex tube. Thus vortex sheets are
a characteristic structure of both DNS and experimental turbulence.

This alignment had been predicted by Vieillefosse (1982) and explained kinemat-
ically by Jiménez (1992). Vieillefosse (1982) proposed that a tube is created along
the axis of the largest strain, but very soon aligns with the intermediate strain.
Jiménez (1992) showed that a vortex tube has the observed alignment, but did not
consider how the tube may have formed. Thus both these explanations suggest that the
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Figure 4. Distortion of vortex rings to show the effect of orientation relative to mean strain. Note
that a Townsend eddy consists of many vortex rings with the same axis. Double arrows indicate
vorticity direction and single arrows indicate velocity direction. Note that the nonlinear terms are
identically zero for a circular vortex ring. (a) Orientation of mean irrotational strain. (b) Vortex
ring aligned with the axis in the stretched direction. (i) Initial state. (ii) Initial velocity profile, note
that

∫ ∞
−∞ u2(x) dx2 = 0. (iii) Effect of strain, the eddy does not quickly become unstable. (c) Vortex

ring aligned with the axis in the compressed direction. (i) Initial state. (ii) Distortion just before
nonlinear terms become significant. (iii) The nonlinear terms cause the elliptical vortex ring to
deform. (iv) The elliptical cross-section of the vortex ring also deforms, rolling up.

alignment arises only after tubes have formed. However, Vincent & Meneguzzi (1994)
specifically considered the explanation of Vieillefosse and rejected it since: “The align-
ment of vorticity with the intermediate strain eigenvector is found to exist before the
shear instability develops, and is the result of vorticity sheet production by strong
strain. It is not a consequence of tube formation.” Thus the explanations of
Vieillefosse (1982) and Jiménez (1992) are clearly not sufficient to explain the origin
of the observed alignment. Shtilman et al. (1993) have also shown that this alignment
cannot be present in random-phase Gaussian flows with the same spectrum as a truly
turbulent flow.
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We now show that this alignment can be produced by irrotational straining of an
initially random flow and in the following subsection we will show that this straining
tends to produce vortex sheets rather than tubes. Since the small-scale vorticity ω in
these regions of larger-scale strain Sij is initially weak (i.e. |ω| � S), an RDT analysis
is valid. The results of §§2 and 3 are now used to analyse the relation between ω and
the eigenvectors of sij in a strain given by (2.11) (note that adding viscosity would
not affect alignments).

Consider the solution for ω and u (given by (2.19), (2.18), (2.5)) at large strain ratio
c = β−1 = exp t. From the definition sij = 1

2
(∂ui/∂xj + ∂uj/∂xi), the Fourier transform

of the small-scale rate-of-strain tensor is

ŝ ∼


k1

k2

ω̂30β
2 1

2
ω̂30

1
2

(
k3

k2

ω̂30 −
k1

k2

ω̂10

)
β

1
2
ω̂30

k3

k2

ω̂10 − 1
2
ω̂10β

−1

1
2

(
k3

k2

ω̂30 −
k1

k2

ω̂10

)
β − 1

2
ω̂10β

−1 −k3

k2

ω̂10

 , (5.1)

where the subscript 0 indicates initial value of a vorticity component and we have
retained only the largest term in each of the components of ŝij .

The characteristic equation for the eigenvalues ξi of ŝij is

ξ3 − Pξ + Q = 0. (5.2)

At large times the large and small roots of (5.2) are proportional to β−1. The roots
of a cubic equation with three distinct real roots must satisfy ξ1ξ2ξ3 = Q, hence the
intermediate eigenvalue ξ2 must decay exponentially with time:

ξ2 ∝ β2 = exp(−2t). (5.3)

(Note that the fact that the magnitude of the intermediate eigenvalue decreases rapidly
while the magnitude of the other eigenvalues increases rapidly may help explain why
the average value of the intermediate eigenvalue measured in DNS is significantly
smaller than the other two, typical values are 3:1:−4, e.g. Kerr 1987.) Thus at large
times the eigenvalues of sij approach asymptotically

ξ1 = 1
2
ω10β

−1, ξ2 = 0, ξ3 = − 1
2
ω10β

−1, (5.4)

with corresponding ‘large positive’ ξ1, ‘intermediate’ ξ2 and ‘large negative’ ξ3 eigen-
vectors (0,1,1), (1,0,0), (0,1,−1) respectively. The results (5.3), (5.4) show that the
‘intermediate’ eigenvector of the small-scale motion (ξ2) tends to align on a time scale
of S−1 with the large positive eigenvector of Sij . From the basic vorticity equation
(2.7), when nonlinear and viscous terms are small the small-scale vorticity ω, whatever
its initial orientation, aligns with the large positive eigenvector of Sij , on a time scale
of S−1. Therefore the small-scale vorticity ω aligns with the intermediate eigenvector
of sij .

As the magnitude of the small-scale strain rate ||sij || increases exponentially with
time (5.1) it becomes of the order of S = ||Sij || on a time scale t = 1/S ln(ε−1). This
time is much less than the RDT limit TNL ∼ L/u0 (from (3.18)) in case (a), but is equal
to TNL (see (3.34)) for case (b). Thus turbulence strain can be amplified by purely
linear effects to a value at least as large (and possibly much larger) than the applied
strain. However, for TD � TNL the linear relationships between the alignments of
vorticity and strain breaks down. Thus for a certain period TD ∼ TNL, the overall
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alignment of the strain (i.e. small and large scale) is dominated by that of the strained
vorticity and therefore we conclude that on this time scale the vorticity ω aligns with
the intermediate eigenvector of the total rate of strain. This is what is observed in
the numerical experiments. The enhancement of alignment by irrotational straining
has recently been demonstrated in compressible turbulence, when it passes through
a shock front (Kevlahan, Krishnan & Lee 1992). We now calculate the enstrophy
production and demonstrate that the structure produced by the irrotational straining
is a sheet rather than a tube.

5.2. Enstrophy production

After persistent inviscid irrotational straining the RDT solutions ω become (in the
reference frame of the eigenvectors of s)

ω′1 = ω1 = ω10β
−1, (5.5)

ω′2 =
1√
2

(ω3 + ω2) =
1√
2

(ω30 + ω20β), (5.6)

ω′3 =
1√
2

(ω3 − ω2) =
1√
2

(ω30 − ω20β), (5.7)

and from equation (5.1) the small-scale rate-of-strain tensor has non-zero components
s11 = ξ2β

2, s22 = − 1
2
ω10β

−1 − 1
2
ξ2β

2, s33 = 1
2
ω10β

−1 − 1
2
ξ2β

2 where ξ2(k)β2 is the
intermediate eigenvalue of s).

The enstrophy equation is

D( 1
2
ω2)

Dt
= ωiωj(Sij + sij)− ν

(
∂ωi

∂xj

)2

, (5.8)

and therefore the contribution to enstrophy production from the small-scale rate of
strain is given by

ωiωjsij = ω2
10β
−2ξ2β

2

− 1
4
(ω2

20β
2 + 2ω20ω30β + ω2

30)(ω10β
−1 + ξ2β

2)

+ 1
4
(ω2

20β
2 − 2ω20ω30β + ω2

30)(ω10β
−1 − ξ2β

2), (5.9)

which for long times becomes

ωiωjsij ∼ ξ2ω
2
10 − 1

2
ξ2ω

2
30 − ω10ω20ω30. (5.10)

However, because of isotropy 〈ω2
10〉 = 〈ω2

20〉 = 1
3
〈ω2

0〉 and 〈ω10ω20ω30〉 = 0 and hence

GNL = 〈ωiωjsij〉 = 1
6
〈ξ2ω

2
0〉, (5.11)

which may be either positive or negative depending on the sign of ξ2.
The contribution to nonlinear enstrophy production from the applied strain is

easily found from (5.8) and (5.6) to be

GL = 〈ωiωjSij〉 = 〈ω2
10〉β−2S, (5.12)

which is always positive.
Note that equations (5.1) and (5.7) also show that the vorticity aligns with the

vortex stretching vector of the applied strain ωjSij . This alignment has also been
observed in DNS (Shtilman et al. 1993).

Equation (5.11) shows that enstrophy is created (destroyed) by small-scale interac-
tions if ξ2 > 0 (ξ2 < 0). A related kinematical result was proved by Betchov (1956).
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Of course, only a dynamical analysis can indicate the conditions under which this re-
lation actually occurs. As we discovered in §3, the enstrophy generated by small-scale
interactions is negligible compared with the enstrophy generated by the applied strain
as long as the applied strain S is significant. However, in a turbulent flow small-scale
turbulence can be rapidly advected through any given region of irrotational straining.
Once the small-scale turbulence leaves the straining region the major contribution
to enstrophy generation is given by equation (5.11), and then whether enstrophy is
created or destroyed depends on the sign of ξ2.

Although we found in §3 that in general (case b) the largest nonlinear terms grow
faster (by O(β−1)) than the linear terms, this does not mean that the nonlinear
enstrophy growth is faster than the linear enstrophy growth. In fact, as we have
seen above, to leading order GNL is a constant while GL increases in time like β−2.
This is because the fastest growing nonlinear terms are the advection terms of Q̂1

which do not produce enstrophy. Thus RDT estimates of enstrophy production (at
wavenumbers where RDT is valid) should be accurate.

The destruction of enstrophy by the small-scale strain part of (5.8) in some strained
regions and its production in other strained regions (depending on local values of
the eigenvalues of s) would eventually produce an intermittent vorticity distribution.
Thus, in a turbulent flow where the vorticity is initially evenly distributed, irrotational
straining tends to concentrate vorticity into small regions – vortex sheets. Therefore
we have seen that irrotational straining is able to produce both the alignment seen
in the DNS of Vincent & Meneguzzi (1994) and the vortex sheets observed in the
experiments of Schwartz (1990).

A recent perturbation analysis and three-dimensional numerical simulation by Pas-
sot et al. (1995) has shown that when a strained vortex sheet becomes unstable,
vorticity concentrates into steady (possibly spiral) tubular structures with finite am-
plitude. They conclude that this is the process that creates the intense and long-lived
vortex tubes observed in DNS and experiments (Douady, Couder & Brachet 1991) of
homogeneous turbulence. Hence one could expect large-scale irrotational straining to
produce an intermittent distribution of spiral vortex tubes. The experimental obser-
vations of Schwarz (1990) indicate that at high Reynolds numbers the tubes retain a
structure composed of rolled up vortex sheets, and thus should retain the alignment
developed during the sheet phase.

The analyses presented in §§5.1 and 5.2 are valid over a finite time TNL (which,
estimated by (3.18), is somewhat greater than S−1) before the nonlinear effects
become significant. A deeper understanding of this surprising result will require a
more detailed analysis to show how persistent irrotational strain on a time scale much
greater than S−1 affects alignment of ω and ξ2. Another feature of turbulent flow is
the presence of variations of large-scale strains acting in adjacent parts of the flow.
There may be a good reason for neglecting the effects of adjacent strain because of
the ‘sheltering’ effect of vorticity, which can isolate different regions of irrotational
strain (Hunt et al. 1997).

6. Discussion
The main result of this paper has been to demonstrate quantitatively the sensitivity

to initial and boundary conditions of turbulence undergoing plane irrotational strain.
In particular, we considered the validity of the rapid distortion theory (RDT) ap-
proximation, which applies initially if (u0/L)/S = ε� 1, where u0 is the initial r.m.s.
velocity of the turbulence, L is the initial integral scale of the turbulence and S is the
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Figure 5. Comparison between inviscid RDT (lines) and data from a contracting wind-tunnel
experiment (circles) for the change in turbulent kinetic energy q2 due to plane irrotational straining
of turbulent flow (data from Tucker & Reynolds 1968). The initial condition is roughly ε = 2.8.
The RDT results have been corrected to compensate for the natural decay of the turbulence using
the model equation q2/q2

0 = (1 + 2ε0/(nq
2
0S) ln c)−n where ε0 is the initial dissipation rate, q0 is the

initial turbulent kinetic energy and n is a parameter which was found to be 1.24 in the absence of
the distortion.

applied strain rate. The RDT solution is the leading-order term in the perturbation
series solution in terms of ε. We used the asymptotic form of the convolution integrals
for the zeroth-order nonlinear terms when the strain ratio β−1 = c = exp(St)� 1 to
determine when (in scale and time) the perturbation series in ε fails, and hence to
estimate the domain of validity of inviscid RDT. The technique introduced here may
well be applicable to other distorted flows, with equally interesting results.

If the Fourier component of the velocity in the compressed direction û2(k) at k2 = 0
is initially zero, i.e.

û2(k2 = 0) = 0 or

∫ ∞
−∞
u2(x) dx2 = 0, (6.1)

then the inviscid RDT approximation for the effect of plane irrotational strain on
this flow remains valid over a time TNL ∼ L/u0 = TL. This condition describes
certain eddy structures in a contracting wind tunnel (see figure 1). However, in most
homogeneous isotropic DNS (6.1) is generally not satisfied and the time scale for the
validity of RDT is shorter, TNL ∼ 1/S ln(ε−1). Note that the r.m.s. velocity can be
well approximated by linear RDT, even when the r.m.s. vorticity is strongly affected
by nonlinear effects. This difference comes from the fact that the slope of the energy
spectrum is negative, while the slope of the enstrophy spectrum is positive. Thus
r.m.s. vorticity is sensitive to errors at the small scales where RDT fails first, while
r.m.s. velocity is insensitive to these errors.

Viscosity dominates in the linear terms when t� (1/S) ln(k−1(Re/ε)1/2), and RDT
fails immediately in this range. One should note, however, that in this range both
the zeroth-order RDT terms and first-order terms have decreased essentially to zero.
If (6.1) is satisfied RDT remains valid for the largest scales until the viscous range,
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Figure 6. Comparison between inviscid RDT (lines) and DNS results (circles) for the change
in turbulent kinetic energy q2 due to plane irrotational straining of turbulent flow (data from
Lee & Reynolds 1985). The RDT results have been corrected to compensate for the natural
decay of the turbulence as in figure 5 and n was found to be roughly 1.5. The dashed curve
is the uncompensated RDT prediction. From bottom to top the runs are for initial conditions,
ε = 2.0, 1.0, 0.5, 0.25, 0.125, 0.0260, 0.0065. The asymptotic analysis gives the period of validity of
RDT as c = n.a., n.a., n.a., 4.0, 8.0, 38.5, 77.5 respectively (where n.a. = not applicable).

and thus in this case the effective time limit for RDT for the largest turbulence scales
is TNL ∼ (1/S) ln((Re/ε)1/2). If (6.1) is not satisfied then RDT usually fails before
reaching the viscous range and the inviscid estimate for the validity of RDT remains
valid.

If (6.1) holds, then the maximum amplification of vorticity under RDT is ω1/S ∼
ε exp(ε−1) � 1, otherwise the maximum amplification of vorticity under RDT is
ω1/S ∼ 1. This result is interesting because it shows that in all flows turbulence
vorticity can be amplified to the magnitude of the applied strain while linear RDT is
approximately valid, but that in some flows, with certain eddy structures and if strain
is large enough, RDT remains valid even when the turbulence vorticity has become
much larger than the applied strain.

We find that the order-of-magnitude estimate for the time period of the validity
of RDT based on the criterion (2.10b), namely that u0(t)/L � max(S, 1/t), is an
underestimate since u0(t)/L increases exponentially in time. Expressed in similar
terms, we find instead that u0/L � 1/t if (6.1) is satisfied, and u0/L � S/ exp(St)
otherwise, where u0 = u0(t = 0). Interestingly, the ‘crudest’ order-of-magnitude
estimate, u0/L� 1/t, is only accurate in the specific case (6.1).

The results on the validity of RDT for the inviscid and viscous ranges may be
combined and summarized concisely in terms of the strain ratio c = exp(St) as

c <

(
SRe

u0/L

)1/2

, symmetric in compressed direction, (6.2a)

c < min

(
S

u0/L
,

(
SRe

u0/L

)1/2
)
, in general, (6.2b)

where we have considered the largest turbulent length scales.
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Another interesting result is that the fastest growing nonlinear terms are the
advection terms in the equation for ω1 (the exponentially increasing vorticity in
the stretched direction). If the advection terms are neglected the RDT solution
for ω1 is valid for all time up to first order. The RDT solution for ω2 fails
earlier, but ω2 decreases exponentially in time. Thus, the generation of enstro-
phy (which does not depend on advection) should be very accurately predicted by
RDT.

Several experiments (MacPhail 1944; Townsend 1954; Maréchal 1967; Tucker
& Reynolds 1968; Reynolds & Tucker 1975) have been carried out to investigate
the effect of irrotational distortion on turbulence. All these experiments used a
wind-tunnel set-up similar to that shown schematically in figure 1. The experiments
attempted to verify RDT, but unfortunately the ratio (u0/L)/S = ε, which should
be very small for RDT to be initially valid, was at best approximately 2.8! On the
other hand, by extending the contracting section of the wind-tunnel Maréchal was
able to obtain strain ratios as high as 14. Because ε 6� 1 in these experiments the
analysis of the period of validity of RDT derived here is not formally applicable.
However figure 5 shows that the RDT prediction of the evolution of turbulent
kinetic energy is still remarkably accurate at least until c = 4. As explained in
§3.2, RDT should be particularly good at predicting the evolution of turbulent
kinetic energy (or, equivalently, r.m.s. velocity) . In addition, as pointed out by
Reynolds & Tucker (1975): “the rapid-distortion hypothesis already accounts for
most features of the response.”

The only DNS of the effect of plane irrotational strain on turbulence is the study
of Lee & Reynolds (1985). These simulations were able to produce very high strain
rates (ε � 1), but at a relatively low Reynolds number (Rel ∼ 50) and only until a
moderate strain ratio (c 6 4). The results of these simulations are shown in figure 6
along with RDT predictions corrected for the decay of the turbulence. The agreement
with RDT is reasonable for all the simulations (even those with ε 6� 1) and is
consistent with the period of validity of RDT calculated here. It is important to note,
however, that the curve for the smallest ε represents only 4 time steps and thus it
is unlikely that any nonlinear change in the turbulence could have developed. To
properly verify the validity calculations it would be necessary to go to much higher
strain ratios. Again, perhaps the most surprising result is that RDT works very well
even when the nonlinear and linear terms are initially of the same order (ε ∼ 1), and
remains valid up to moderate strain ratios.

The surprising accuracy of RDT even when ε ∼ 1 may be due to the fact that,
as shown by the asymptotic analysis, the straining motion modifies the turbulence
so that the nonlinear terms are inhibited. This explanation is supported by the fact
that ε(t) actually decreases during the distortions for the weaker strain DNS: from
(2.0, 1.0, 0.5, 0.25) to (0.38, 0.33, 0.27, 0.21). The inhibition of the nonlinear terms thus
appears strongest when the applied strain is weak! Thus, even if the nonlinear
terms are initially of the same order as the linear terms RDT may still be a good
approximation.

The mathematical results presented here are also quite consistent with the experi-
mental results for small-scale turbulence undergoing very strong large-scale distortion
around a circular cylinder of radius a obtained by Britter, Hunt & Mumford (1979).
In this experiment

∫
S dt ≈ 1.2, β ≈ 0.3, and ε ≈ 0.1 for the small-scale turbulence

case. The experimental results on the centreline showed that the RDT results were
approximately correct for the amplified velocity components (u2, u3) (in the notation
of this paper), but that RDT was only accurate near the beginning of the distortion
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(where the radius r > 1.5) for the components that are predicted to decrease (u1) . At
larger strains u1 increases which shows that nonlinear effects have a greater impact on
the velocity components that are diminished (i.e. in the stretched direction) than on
those that are amplified (i.e. in the compressed and normal directions). Generalizing
the criterion (3.34) to a variable strain leads to∫ TNL

0

S dt ∼ ln(ε−1). (6.3)

Taking the potential flow around the cylinder, U(r) = U0(1 − a2/r2), as the applied
strain we find from (6.3) that the value of r = rNL for the radius along the stagnation
line at which the nonlinear terms become significant is

rNL

a
≈ 1.1. (6.4)

The nonlinear effects tending to reduce the anisotropy were observed to become
significant at r/a ≈ 1.3, i.e. slightly sooner than the time estimated by (6.4). The
spectra of u2 and u3 on the stagnation line show that when r/a = 1.2, or β = 0.1, the
amplification predicted by RDT is observed to be reduced when k1 > 1; this can be
compared to the prediction of (3.41b) that

kNLL ∼
(

0.3

0.1

)1/3

≈ 1.4. (6.5)

These estimates are not formally applicable to the problem of turbulent flow around
a cylinder (because the strain is non-uniform and there is also a blocking effect), but
they nevertheless give reasonable estimates of the range of validity of RDT. Around
the sides of the cylinder on the centreline θ = π/2 where the strain (S) is smaller
and the time of distortion is large, however, the agreement with RDT is not as
good.

Perhaps the most general point to emerge is that a weak random vorticity field
can be amplified by a larger-scale strain so that its strain rate becomes of the same
order as the applied strain. This is because the nonlinear processes, which might
have inhibited this growth, are themselves inhibited by the straining. In other words
strained turbulence adjusts itself so as to reduce to a consistent extent the ‘scrambling’
effects on its own amplified vorticity. This helps explain why weak turbulence can be
so strongly amplified at the stagnation point of cylinders (Sadeh & Brauer 1980).

At a more general level, this ‘adjustment’ plausibly explains an essential feature of
the cascade process of turbulence: that small-scale eddy motions have higher strain
rates than those of the large-scale motions that provide their energy.
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